
CS636: Concurrent Data
Structures

Swarnendu Biswas

Semester 2018-2019-II

CSE, IIT Kanpur

Content influenced by many excellent references, see References slide for acknowledgements.

Need for Concurrent Data Structures

CS636 Swarnendu Biswas 2

Using more hardware resources may not always translate to
speedup

Multithreaded/concurrent programming is now mainstream

Challenges with Concurrent Programming

3/25/2019 Swarnendu Biswas 3

Less synchronization More synchronization

Deadlock
Order, atomicity &

sequential consistency
violations

Poor performance: lock
contention, serialization

Concurrent and
correct

Need for Concurrent Data Structures

3/25/2019 Swarnendu Biswas 4

Less synchronization More synchronization

Deadlock
Order, atomicity &

sequential consistency
violations

Poor performance: lock
contention, serialization

Concurrent and
correctImplies that languages and libraries should provide

efficient portable data structures as building blocks

Designing a Concurrent Set
Data Structure

CS636 Swarnendu Biswas 5

Designing A Set Data Structure

public interface Set<T> {
boolean add(T x);
boolean remove(T x);
boolean contains(T x);

}

add(x)

• adds x to the set and returns true if
and only if x was not already present

remove(x)

• removes x from the set and returns
true if and only if x was present

contains(x)

• returns true if and only if x is present
in the set

CS636 Swarnendu Biswas 6

Designing A Set Data Structure using Linked
Lists
class Node {
T data;
int key;
Node next;

}

• Two sentinel nodes
• head and tail

CS636 Swarnendu Biswas 7

head tail

• key field is the data’s hash code,
to help with efficient search.

A Set Instance

CS636 Swarnendu Biswas 8

a b

head tail

Invariants

• No duplicates

• Nodes are sorted based on the key value

• tail is reachable from head

A Thread Unsafe Set Data Structure

public class UnsafeList<T> {

private Node head;

public UnsafeList() {

head = new Node(Integer.MIN_VALUE);

head.next = new Node(Integer.MAX_VALUE);

}

CS636 Swarnendu Biswas 9

A Thread Unsafe Set Data Structure: add()

public boolean add(T x) {

Node pred, curr;

int key = x.hashcode();

pred = head;

curr = pred.next;

while (curr.key < key) {

pred = curr;

curr = curr.next;

}

if (key == curr.key) {

return false;

} else {

Node node = new Node(x);

node.next = curr;

prev.next = node;

return true;

}

}

CS636 Swarnendu Biswas 10

A Thread Unsafe Set Data Structure: remove()

public boolean remove(T x) {

Node pred, curr;

int key = x.hashcode();

pred = head;

curr = pred.next;

while (curr.key < key) {

pred = curr;

curr = curr.next;

}

if (key == curr.key) {

pred.next = curr.next;

return true;

} else {

return false;

}

}

CS636 Swarnendu Biswas 11

A Thread Unsafe Set Data Structure:
contains()

public boolean contains(T x) {

Node pred, curr;

int key = x.hashcode();

pred = head;

curr = pred.next;

while (curr.key < key) {

pred = curr;

curr = curr.next;

}

if (key == curr.key) {

return true;

} else {

return false;

}

}

}

CS636 Swarnendu Biswas 12

A Thread Unsafe Set Data Structure: remove()

public boolean remove(T x) {

Node pred, curr;

int key = x.hashcode();

pred = head;

curr = pred.next;

while (curr.key < key) {

pred = curr;

curr = curr.next;

}

if (key == curr.key) {

pred.next = curr.next;

return true;

} else {

return false;

}

}

CS636 Swarnendu Biswas 13

Can you give an example to show remove() is not
Thread Safe?

Unsafe Set: Incorrect remove()

CS636 Swarnendu Biswas 14

head
prev2 curr2

b

tail

a

• Thread 1 is executing remove(a)

• Thread 2 is executing remove(b)

prev1 curr1

X X

A Concurrent Set Data Structure

public class CoarseList<T> {

private Node head;

private Lock lock = new ReentrantLock();

public CoarseList() {

head = new Node(Integer.MIN_VALUE);

head.next = new Node(Integer.MAX_VALUE);

}

CS636 Swarnendu Biswas 15

A Concurrent Set Data Structure: add()

public boolean add(T x) {
Node pred, curr;
int key = x.hashcode();
lock.lock();
try {

pred = head;
curr = pred.next;
while (curr.key < key) {

pred = curr;
curr = curr.next;

}

if (key == curr.key) {

return false;

} else {

Node node = new Node(x);

node.next = curr;

prev.next = node;

return true;

}

} finally {

lock.unlock();

}

}

CS636 Swarnendu Biswas 16

A Concurrent Set Data Structure: remove()

public boolean remove(T x) {
Node pred, curr;
int key = x.hashcode();
lock.lock();
try {

pred = head;
curr = pred.next;
while (curr.key < key) {

pred = curr;
curr = curr.next;

}

if (key == curr.key) {

pred.next = curr.next;

return true;

} else {

return false;

}

} finally {

lock.unlock();

}

}

}

CS636 Swarnendu Biswas 17

Performance Metrics of Concurrent Data
Structures
• Speedup measures how effectively is an application utilizing

resources
• Linear speedup is desirable

• Data structures whose speedup grows with resources is desirable

• Amdahl’s law says we need to reduce amount of serialized code

• Lock contention
• Lock implementations with single memory location can introduce additional

coherence traffic and memory traffic due to unsuccessful acquires

• Blocking or nonblocking

CS636 Swarnendu Biswas 18

Challenges in Designing Concurrent Data
Structures
• Multiple threads can access a shared object

• E.g., a node in our Set data structure

• Situation:
• Thread 1 is checking for contains(a)

• Thread 2 is executing remove(a)

• How do you reason about the outcome?

CS636 Swarnendu Biswas 19

Reasoning about Correctness

• Identify invariants and make sure they always hold
• An item is in the set if and only if it is reachable from head

• Safety property is linearizability

• Liveness property are starvation and deadlock-freedom

CS636 Swarnendu Biswas 20

Understanding Linearizability

• Say you perform some operations on an object
• Each operation requires an invocation on that object, followed by a response

• A history is a sequence of invocations and responses on an object made
by concurrent threads

CS636 Swarnendu Biswas 21

Thread 1 invokes
acquire(lock)

Thread 2 invokes
acquire(lock)

Thread 1 fails
Thread 2
succeeds

time

Understanding Linearizability

• Sequential history is where all invocations and responses are
instantaneous

CS636 Swarnendu Biswas 22

Thread 1 invokes
acquire(lock)

Thread 2 invokes
acquire(lock)

Thread 1 fails
Thread 2
succeeds

time

Is this a sequential
history?

Understanding Linearizability

• Sequential history is where all invocations and responses are
instantaneous

CS636 Swarnendu Biswas 23

Thread 1 invokes
acquire(lock)

Thread 2 invokes
acquire(lock)

Thread 1 fails
Thread 2
succeeds

time

Thread 1 invokes
acquire(lock)

Thread 1 fails
Thread 2 invokes

acquire(lock)
Thread 2
succeeds

Linearizability

• A history (set of operations) σ is linearizable if
• For every completed operation in σ, the operation returns the same result in

the execution as it would return if every operation in σ would have been
completed one after the other

• If an operation op1 completes before operation op2, then op1 precedes op2
in σ.

CS636 Swarnendu Biswas 24

Linearizability

• A history (set of operations) σ is linearizable if
• For every completed operation in σ, the operation returns the same result in

the execution as it would return if every operation in σ would have been
completed one after the other

• If an operation op1 completes before operation op2, then op1 precedes op2
in σ.

• Simpler words
• Invocations and response can be reordered to form a sequential history

• Sequential history is correct according to the semantics of the object

• If a response preceded an invocation in the original history, it must still
precede it in the sequential reordering

CS636 Swarnendu Biswas 25

Understanding Linearizability

• Sequential history

CS636 Swarnendu Biswas 26

time

Thread 1 invokes
acquire(lock)

Thread 1 fails
Thread 2 invokes

acquire(lock)
Thread 2
succeeds

Is this linearizable?

Understanding Linearizability

• Sequential history

• Successful linearization

CS636 Swarnendu Biswas 27

time

Thread 1 invokes
acquire(lock)

Thread 1 fails
Thread 2 invokes

acquire(lock)
Thread 2
succeeds

Thread 2 invokes
acquire(lock)

Thread 2
succeeds

Thread 1 invokes
acquire(lock)

Thread 1 fails

Linearization Point

• Linearization point is between the function invocation and response

• A single atomic step where the method call “takes effect”

CS636 Swarnendu Biswas 28

What are the linearization points for add(), remove() and contains()
for the coarsely synchronized Set?

Linearizability vs Serializability

CS636 Swarnendu Biswas 29

time

Thread 1
invokes

acquire(lock)

Thread 1’s
acquire

succeeds

Thread 2
invokes

release(lock)

Thread 2’s
release

succeeds

Thread 1
invokes

release(lock)

Thread 1’s
release

succeeds

Thread 2
invokes

release(lock)

Thread 2’s
release

succeeds

Thread 1
invokes

acquire(lock)

Thread 1’s
acquire

succeeds

Thread 1
invokes

release(lock)

Thread 1’s
release

succeeds

Not
linearizable

Serializable

Linearizability vs Serializability

Linearizability

• Property about operations on
individual objects
• Local property

• Requires real-time ordering

Serializability

• Property about transactions or
group of operations on one or
more objects
• Global property

• Requires output is equivalent to
some serial ordering

CS636 Swarnendu Biswas 30

Linearizability vs Serializability

Linearizability

• Property about operations on
individual objects
• Local property

• Requires real-time ordering

Serializability

• Property about transactions or
group of operations on one or
more objects
• Global property

• Requires output is equivalent to
some serial ordering

CS636 Swarnendu Biswas 31

“Linearizability can be viewed as a special case of strict serializability where
transactions are restricted to consist of a single operation applied to a single
object” – Herlihy and Wing

Types of Synchronization

Coarse-grained synchronization

Fine-grained synchronization

Optimistic synchronization

Lazy synchronization

Nonblocking synchronization

CS636 Swarnendu Biswas 32

Fine-Grained Synchronization

• Add a lock object to each list
node

class Node {
T data;
int key;
Node next;
Lock lock;

}

CS636 Swarnendu Biswas 33

What are a few possible ideas to implement add() and
remove()?

Is one lock per node enough?

Thread 1

node0.mtx_lock.lock();

node1 = node0.next;

node0.mtx_lock.unlock();

node1.mtx_lock.lock();

Thread 2

// Remove node1 from list

CS636 Swarnendu Biswas 34

Is one lock per node enough?

CS636 Swarnendu Biswas 35

head

b

tail

aX

• Thread 1 is executing remove(a)

• Thread 2 is executing remove(b)

cX

remove(a) remove(b)

Fine-Grained Synchronization: add()
public boolean add(T x) {

int key = x.hashcode();

head.lock();

Node pred = head;

try {

Node curr = pred.next;

curr.lock();

try {

while (curr.key < key) {

pred.unlock();

pred = curr;

curr = curr.next;

curr.lock();

}

if (key == curr.key) {

return false;

} else {

Node node = new Node(x);

node.next = curr;

prev.next = node;

return true;

}

} finally {

curr.unlock();

}

} finally {

pred.unlock();

}

}

CS636 Swarnendu Biswas 36

Fine-Grained Synchronization: remove()
public boolean remove(T x) {

int key = x.hashcode();

head.lock();

Node pred = null, curr = null;

try {

pred = head; curr = pred.next;

curr.lock();

try {

while (curr.key < key) {

pred.unlock();

pred = curr;

curr = curr.next;

curr.lock();

}

if (key == curr.key) {

pred.next = curr.next;

return true;

} else {

return false;

}

} finally {

curr.unlock();

}

} finally {

pred.unlock();

}

}

CS636 Swarnendu Biswas 37

Need to avoid Deadlocks

• Deadlocks are always a problem with fine-grained locking

• For the Set data structure, each thread must acquire locks in some
pre-determined order

CS636 Swarnendu Biswas 38

Fine-Grained Set Design

CS636 Swarnendu Biswas 40

Are there other problems with our fine-grained Set design?

Optimistic Synchronization

Optimistic strategy

• Access data without acquiring a lock

• Lock only when required

• Validate that the condition before locking is still valid

• If valid, then continue with access/mutation

• If invalid, start over

CS636 Swarnendu Biswas 41

Optimistic strategy works well if conflicts are rare

Optimistic Synchronization: add()
public boolean add(T x) {

int key = x.hashcode();

while (true) {

Node pred = head;

Node curr = pred.next;

while (curr.key < key) {

pred = curr;

curr = curr.next;

}

pred.lock(); curr.lock();

try {

if (validate(pred, curr)) {

if (curr.key == key) {

return false;

} else {

Node node = new Node(x);

node.next = curr; prev.next = node;

return true;

}

}

} finally {

curr.unlock(); pred.unlock();

}

}

}

CS636 Swarnendu Biswas 42

How could you validate?

• Double check that the optimistic
result is still valid

• Check that prev is reachable
from head and prev.next ==
curr

boolean validate(Node prev, Node curr) {

Node node = head;

while (node.key <= prev.key) {

if (node == prev)

return prev.next == curr;

node = node.next;

}

return false;

}

CS636 Swarnendu Biswas 43

Is validation necessary?

CS636 Swarnendu Biswas 44

Is validation necessary?

CS636 Swarnendu Biswas 45

a

head

z

tail

p

curr

prev

X

• Thread 1 is executing remove(p)

Optimistic Synchronization: remove()
public boolean remove(T x) {

int key = x.hashcode();

while (true) {

Node pred = head;

Node curr = pred.next;

while (curr.key < key) {

pred = curr;

curr = curr.next;

}

pred.lock(); curr.lock();

try {

if (validate(pred, curr)) {

if (curr.key == key) {

pred.next = curr.next;

return true;

} else {

return false;

}

}

} finally {

curr.unlock(); pred.unlock();

}

}

}

CS636 Swarnendu Biswas 46

Optimistic Synchronization: contains()
public boolean contains(T x) {

int key = x.hashcode();

while (true) {

Node pred = head;

Node curr = pred.next;

while (curr.key < key) {

pred = curr;

curr = curr.next;

}

pred.lock(); curr.lock();

try {

if (validate(pred, curr)) {

return curr.key == key;

}

} finally {

curr.unlock(); pred.unlock();

}

}

}

CS636 Swarnendu Biswas 47

Optimistic Synchronization Design

CS636 Swarnendu Biswas 48

Are there problems with our optimistic synchronization-
based Set design?

Lazy Synchronization

Delay mutation
operations for

a later time

• Add a mark/flag on each node to indicate say
deletion

• Invariant: every unmarked node is reachable
from head

Behavior

• contains(): needs only one wait-free traversal

• add(): traverses the list, locks the
predecessor, and inserts the node

• remove(): mark the target node logically
removing it, then redirect the predecessor’s
next link physically removing it

CS636 Swarnendu Biswas 49

Lazy Synchronization: add()
public boolean add(T x) {

int key = x.hashcode();

while (true) {

Node pred = head;

Node curr = pred.next;

while (curr.key < key) {

pred = curr; curr = curr.next;

}

pred.lock();

try {

curr.lock();

try {

if (validate(pred, curr)) {

if (curr.key == key) {

return false;

} else {

Node node = new Node(x);

node.next = curr;

prev.next = node;

return true;

} }

} finally {

curr.unlock(); }

} } finally {

pred.unlock();

} } }

CS636 Swarnendu Biswas 50

How could you validate?

• Check that both prev and curr
are unmarked and prev.next
== curr

boolean validate(Node prev, Node curr) {

return !prev.marked && !curr.marked &&
prev.next == curr;

}

CS636 Swarnendu Biswas 51

Is validation really necessary?

CS636 Swarnendu Biswas 52

head
prev curr

, 0b, 0

tail

a, 1, 0 X

• Thread 1 is executing remove(b)

• Thread 2 is executing remove(a)

Is validation really necessary?

CS636 Swarnendu Biswas 53

head
prev

a, 0, 0

curr

, 0b, 0

tail

X

p, 0

• Thread 1 is executing remove(b)

• Thread 2 is executing add(p)

Lazy Synchronization: remove()
public boolean remove(T x) {

int key = x.hashcode();

while (true) {

Node pred = head;

Node curr = pred.next;

while (curr.key < key) {

pred = curr; curr = curr.next;

}

pred.lock();

try {

curr.lock();

try {

if (validate(pred, curr)) {

if (curr.key != key) {

return false;

} else {

curr.marked = true;

prev.next = curr.next;

return true;

}

}

} finally {

curr.unlock(); }

}

} finally {

pred.unlock();

} } }
CS636 Swarnendu Biswas 54

Lazy Synchronization: contains()

public boolean contains(T x) {

int key = x.hashcode();

Node curr = head;

while (curr.key < key) {

curr = curr.next;

}

return curr.key == key && !curr.marked;

}

CS636 Swarnendu Biswas 55

Detecting Conflicting Accesses: Example 1

CS636 Swarnendu Biswas 56

curr1

, 0z, 0

tail

X
p, 1

head
prev1

a, 0, 0

x, 1

• Thread 1 is executing contains(x)

• Thread 2 executes remove(p..x)

Detecting Conflicting Accesses: Example 2

CS636 Swarnendu Biswas 57

curr1

, 0z, 0

tail

p, 1

head

a, 0, 0

x, 1

• Thread 1 is executing contains(x)

• Thread 2 is executing remove(p..x)

x, 0

Nonblocking Synchronization

• Why do we need nonblocking designs?

• Eliminate locks altogether

• Idea: Use RMW instructions like CAS to update next field

CS636 Swarnendu Biswas 58

Nonblocking Synchronization with CAS

CS636 Swarnendu Biswas 59

• Thread 1 is executing remove(a)

X
tailhead

a, 1, 0 , 0c, 0

b, 0

remove(a)

• Thread 2 is executing add(b)

add(b)

X

Nonblocking Synchronization with CAS

CS636 Swarnendu Biswas 60

head

b, 1 , 0

tail

a, 1, 0 X

• Thread 1 is executing remove(a)

• Thread 2 is executing remove(b)

c, 0X

remove(a) remove(b)

Possible Workaround

• Cannot allow updates to a node once it has been logically or
physically removed from the list

• Treat the next and marked fields as atomic

CS636 Swarnendu Biswas 61

In Java, we have AtomicMarkableReference<T> from the
java.util.concurrent.atomic package

address bit

AtomicMarkableReference<T>

• public boolean compareAndSet(T expectedReference,

T newReference,

boolean expectedMark,

boolean newMark);

• public boolean attemptMark(T expectedReference,

boolean newMark);

• public T get(boolean[] marked);

CS636 Swarnendu Biswas 62

Designing the Nonblocking Set

• The next field is of type AtomicMarkableReference<Node>

• A thread logically removes a node by setting the mark bit in the next
field

• As threads traverse the list, they clean up the list by physically
removing marked nodes

• Threads performing add() and remove() do not traverse marked
nodes, they remove them before continuing

CS636 Swarnendu Biswas 63

Why?

Helper Code
• Helper method public Window find(Node head, int key)

• Traverses the list seeking to set pred to the node with the largest key less
than key, and curr to the node with the least key greater than or equal to
key

class Window {

public Node pred, curr;

Window(Node myPred, Node myCurr) {

pred = myPred; curr = myCurr;

}

}

CS636 Swarnendu Biswas 64

Helper Code
public Window find(Node head, int key) {

Node pred = null, curr = null, succ = null;

boolean[] marked = {false};

boolean snip;

retry: while (true) {

pred = head;

curr = pred.next.getReference();

while (true) {

succ = curr.next.get(marked);

while (marked[0]) {

snip = pred.next.compareAndSet(curr, succ, false,
false);

if (!snip) continue retry;

curr = succ;

succ = curr.next.get(marked);

}

if (curr.key >= key)

return new Window(pred,
curr);

pred = curr;

curr = succ;

}

}

}

CS636 Swarnendu Biswas 65

Nonblocking Synchronization: add()

public boolean add(T x) {

int key = x.hashcode();

while (true) {

Window w = find(head, key);

Node pred = w.pred, curr = w.curr;

if (curr.key == key) return false;

else {

Node node = new Node(x);

node.next = new AtomicMarkableReference(curr, false);

if (pred.next.compareAndSet(curr, node, false, false))

return true;

} } }

CS636 Swarnendu Biswas 66

Nonblocking Synchronization: remove()
public boolean remove(T x) {

int key = x.hashcode();

boolean snip;

while (true) {

Window w = find(head, key);

Node pred = w.pred, curr = w.curr;

if (curr.key != key) return false;

else {

Node succ = curr.next.getReference();

snip = curr.next.attemptMark(succ, true);

if (!snip) continue;

pred.next.compareAndSet(curr, succ, false, false);

return true;

} } }CS636 Swarnendu Biswas 67

Nonblocking Synchronization: contains()

public boolean contains(T x) {

boolean[] marked = new boolean[];

int key = x.hashcode();

Node curr = head;

while (curr.key < key) {

curr = curr.next;

Node succ = curr.next.get(marked);

}

return curr.key == key && !marked[0];

}

CS636 Swarnendu Biswas 68

Pool Data Structure

Pools
Allows duplicates

May not support membership test (i.e., no contains() method)

Example: stack, queue, bounded/unbounded buffers

CS636 Swarnendu Biswas 69

Data Structure Variants

• Bounded vs Unbounded
• Different requirements and

implementation challenges

public interface Pool<T> {

void put(T item);

T get();

}

• Different method call invocation
semantics
• Blocking vs nonblocking

• Synchronous vs asynchronous

• Total vs partial

CS636 Swarnendu Biswas 70

Bounded Partial Queue

CS636 Swarnendu Biswas 71

head

b

tail

a c

Enqueue and dequeue operations are at the two ends
– allows for concurrent modifications

deq() enq()

Bounded Partial Queue

• Given these requirements, what
do we need to have a correct
concurrent implementation?

CS636 Swarnendu Biswas 72

Bounded Partial Queue

• Given these requirements, what
do we need to have a correct
concurrent implementation?

CS636 Swarnendu Biswas 73

• Lock for mutual exclusion of
enqueues and dequeues?

Bounded Partial Queue

• Given these requirements, what
do we need to have a correct
concurrent implementation?

CS636 Swarnendu Biswas 74

• Lock for mutual exclusion of
concurrent enqueues

• Lock for mutual exclusion of
concurrent dequeues

Possible Java classes we can use:
• ReentrantLock

Bounded Partial Queue

• Given these requirements, what
do we need to have a correct
concurrent implementation?

CS636 Swarnendu Biswas 75

• Lock for mutual exclusion of
concurrent enqueues

• Lock for mutual exclusion of
concurrent dequeues

• Condition variable to indicate
queue is empty

• Condition variable to indicate
queue is full

Possible Java classes we can use:
• ReentrantLock
• Condition

Bounded Partial Queue

• Given these requirements, what
do we need to have a correct
concurrent implementation?

CS636 Swarnendu Biswas 76

• Lock for mutual exclusion of
concurrent enqueues

• Lock for mutual exclusion of
concurrent dequeues

• Condition variable to indicate
queue is empty

• Condition variable to indicate
queue is full

• An atomic variable to track the
current size

Possible Java classes we can use:
• ReentrantLock
• Condition
• AtomicInteger

Bounded Partial Queue: enq()
public void enq(T x) {

boolean wakeDeq = false;

enqLock.lock();

try {

while (size.get() == MAX_CAP)

notFull.await();

Node e = new Node(x);

tail.next = e;

tail = e;

if (size.getAndIncrement() == 0)

wakeDeq = true;

} finally {

enqLock.unlock();

}

if (wakeDeq) {

deqLock.lock();

try {

notEmpty.signalAll();

} finally {

deqLock.unlock();

}

} // end if (wakeDeq)

} // end enq()

CS636 Swarnendu Biswas 77

Bounded Partial Queue: enq()
public void enq(T x) {

boolean wakeDeq = false;

enqLock.lock();

try {

while (size.get() == MAX_CAP)

notFull.await();

Node e = new Node(x);

tail.next = e;

tail = e;

if (size.getAndIncrement() == 0)

wakeDeq = true;

} finally {

enqLock.unlock();

}

if (wakeDeq) {

deqLock.lock();

try {

notEmpty.signalAll();

} finally {

deqLock.unlock();

}

} // end if (wakeDeq)

} // end enq()

CS636 Swarnendu Biswas 78

Where is the
linearization point?

Bounded Partial Queue: enq()
public void enq(T x) {

boolean wakeDeq = false;

enqLock.lock();

try {

while (size.get() == MAX_CAP)

notFull.await();

Node e = new Node(x);

tail.next = e;

tail = e;

if (size.getAndIncrement() == 0)

wakeDeq = true;

} finally {

enqLock.unlock();

}

if (wakeDeq) {

deqLock.lock();

try {

notEmpty.signalAll();

} finally {

deqLock.unlock();

}

} // end if (wakeDeq)

} // end enq()

CS636 Swarnendu Biswas 79

What if the queue was unbounded
and the methods are total?

Bounded Partial Queue: deq()
public void deq() {

boolean wakeEnq = false;

T result;

deqLock.lock();

try {

while (size.get() == 0)

notEmpty.await();

result = head.next.value;

head = head.next;

if (size.getAndDecrement() == MAX_CAP)

wakeEnq = true;

} finally {

deqLock.unlock();

}

if (wakeEnq) {

enqLock.lock();

try {

notFull.signalAll();

} finally {

enqLock.unlock();

}

}

}

CS636 Swarnendu Biswas 80

Evaluating the Bounded Partial Queue

• Need to ensure correct interleaving of concurrent calls to enq() and
deq()
• Special cases: Queue has zero or one element

• Shared updates to the size variable could be a bottleneck

• Can we do something about it?

CS636 Swarnendu Biswas 81

Unbounded Total Queue

• enq() always enqueues an item
• It may run in to OOM error which we will ignore

• deq() returns an error if the queue is empty

CS636 Swarnendu Biswas 82

Unbounded Total Queue

public void enq(T x) {

enqLock.lock();

try {

Node e = new Node(x);

tail.next = e;

tail = e;

} finally {

enqLock.unlock();

}

}

public T deq() {
T result;
deqLock.lock();
try {

if (head.next == null)
return null;

result = head.next.value;
head = head.next;

} finally {
deqLock.unlock();

}
return result;

}

CS636 Swarnendu Biswas 83

A Natural Next Step!

• Unbounded lock-free queue

CS636 Swarnendu Biswas 84

Possible Java classes we can use:
• AtomicReference<T>

Unbounded Lockfree Queue: enq()

public void enq(T x) {

Node node = new Node(x);

while (true) {

Node last = tail.get();

Node next = last.next.get();

if (last == tail.get()) {

if (next == null) {

if (last.next.compareAndSet(next,
node)) {

tail.compareAndSet(last, node);

return;

}

}

} else {

tail.compareAndSet(last, next);

}

} // end if (last == …

} // end while (true)

} // end enq()

CS636 Swarnendu Biswas 85

Where is the
linearization point?

Ensure that tail remains valid!

CS636 Swarnendu Biswas 86

• Thread 1 is executing enq(b)

tail

head
a

b

head

tail

a

Ensure that tail remains valid!

CS636 Swarnendu Biswas 87

• Thread 1 is executing enq(b)

b

head

tail

a

bhead

tail

a

• Thread 2 is executing deq(a)

Unbounded Lockfree Queue: deq()

public void deq(void) {

while (true) {

Node first = head.get();

Node last = tail.get();

Node next = first.next.get();

if (first == head.get()) {

if (first == last) {

if (next == null)

return null;

tail.compareAndSet(last, next);

} else {

T val = next.value;

if (head.compareAndSet(first, next))

return val;

} // end else

} // end if (first == head…)

} // end while (true)

} // end deq()

CS636 Swarnendu Biswas 89

Lock-free Programming and ABA Problem

CS636 Swarnendu Biswas 90

tailhead

ba c

• Thread 1 will execute deq(a)

d

Lock-free Programming and ABA Problem

CS636 Swarnendu Biswas 91

tailhead

ba c

• Thread 1 is executing deq(a), gets delayed

d

Lock-free Programming and ABA Problem

CS636 Swarnendu Biswas 92

tailhead

ba c

• Other threads execute deq(a, b, c, d), then
execute enq(a)

d

Lock-free Programming and ABA Problem

CS636 Swarnendu Biswas 93

tailhead

a b

• Other threads execute deq(a, b, c, d), then
execute enq(a)

Lock-free Programming and ABA Problem

CS636 Swarnendu Biswas 94

• Thread 1 is executes CAS for deq(a), CAS
succeeds

tailhead

a b

head.compareAndSet(first, next)

To Lock or Not to Lock!

• Combine blocking and nonblocking schemes

• For e.g., lazily synchronized Set

• add() and remove() were blocking

• contains() was nonblocking

Use a middle path more often than not

CS636 Swarnendu Biswas 95

Please spend several hours reasoning about the correctness
of your concurrent data structures, if you are writing one!

References

• M. Herlihy and N. Shavit – The Art of Multiprocessor Programming.

• M. Moir and N. Shavit – Concurrent Data Structures.

• Stephen Tu – Techniques for Implementing Concurrent Data Structures on Modern Multicore Machines.

CS636 Swarnendu Biswas 96

